On the exponential stability of switching-diffusion processes with jumps
نویسندگان
چکیده
منابع مشابه
Exponential Stability of Repetitive Processes with Markovian Switching∗
This paper considers 2D feedback systems modeled a by repetitive process where both the forward path and the feedback paths are nonlinear. Using a Lyapunov function approach, sufficient conditions for exponential stability are obtained and in the linear case the connection between exponential stability and the existing stability along the pass theory is established. The results are then extende...
متن کاملReflected Diffusion Processes with Jumps
A stochastic differential equation of Wiener-Poisson type is considered in a d-dimensional bounded region. By using a penalization argument on the domain, we are able to prove the existence and uniqueness of solutions in the strong sense. The main assumptions are Lipschitzian coefficients, either convex or smooth domains and a regular outward reflecting direction. As a direct consequence, it is...
متن کاملOccupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options
In this paper, we provide Laplace transform-based analytical solutions to pricing problems of various occupation-time-related derivatives such as step options, corridor options, and quantile options under Kou’s double exponential jump diffusion model. These transforms can be inverted numerically via the Euler Laplace inversion algorithm, and the numerical results illustrate that our pricing met...
متن کاملThe Disorder Problem for Compound Poisson Processes with Exponential Jumps
The problem of disorder seeks to determine a stopping time which is as close as possible to the unknown time of ’disorder’ when the observed process changes its probability characteristics. We give a partial answer to this question for some special cases of Lévy processes and present a complete solution of the Bayesian and variational problem for a compound Poisson process with exponential jump...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 2012
ISSN: 0033-569X,1552-4485
DOI: 10.1090/s0033-569x-2012-01292-8